【tac交易是什么】精准预测市场?当多方安全计算遇到量化投研
量化投资依托量化模型与数据,寻找能够带来超额收益的多种“大概率”策略。传统量化投资模式下,所使用的外来数据在质量和安全上存在重大隐患,量化模型效果不稳定,影响量化策略的完整性与精确度。
当多方安全计算技术遇到量化投研,投研机构将怎样借力充分挖掘数据价值?算力隐私数据安全专栏特邀郭嘉,初探大数据量化建模,及多方安全计算技术与量化投研工作的结合方式。
传统的投研数据同质化程度极高,模型效果不具有独特性,美国市场有一群人在挖掘和研究更加互联网化的数据指标,称另类因子。由于第三方数据的开放流通限制,必须遵守数据安全的游戏规则。本文借由投研对数据的安全建模方案,实现了多方数据的投研建模,并实现了投资模型的加密部署。
1
- 公开数据,很好理解,就是股价,K线图等随时可以查看的数据;
- 半公开数据,指我们可以获取到,但不能全面地获取的数据,如实时的资金流向我们随时可以获取,但是网站并不会公开以往的数据;
-
非公开数据,即市场上与股票相关的其他公司、证券交易所内部数据,无法对外提供。
引入一个概念——量化投资,量化投资简而言之就是在数据中找规律。大数据为量化投资打开了全新的大门,在量化交易中引入大数据技术,可以充分挖掘海量数据所隐藏的一切信息,来预测金融经济活动,并结合历史预测,及时将预测效果加以反馈,以动态更新交易策略,获得最理想的预测效果。
传统的各类量化指标,无论是基于价格还是基于财务数据都会存在一定的滞后性,无法用更具领先性的手段来了解行业和市场。而采用了大数据技术的行业及个股判断,则可以在一定程度上改善这一情形。利用搜索因子可掌握投资者情绪,利用电商数据可实时得知各行业的基本面动向,利用大V数据集合了集体的智慧,这几种大数据理论上都可以用来预测未来市场情况,将互联网金融的大数据作为选股因子引入模型,代表着资产管理机构在指数投资上重构选股逻辑。
股票市场的信息不对称性是一直存在的问题,量化交易者无法获知市场上非公开数据和互联网数据,且基于大数据与模型的量化交易,往往对操作中的数量与时间节点要求分外严格,丢失或篡改数据均会致使预测与正确结果相偏离,又或致使交易在不对的时刻,以错误的数量来达成。若因信息不安全而外泄数据,长时间便可能会致使业内彼此利用这些数据来恶化竞争。2
多方安全计算的量化优势
事实上,有价值的数据往往躺在别人的怀里,如何只进行“精神共享”,不进行“肉体接触”,这是当下对数据应用安全的合规要求。隐私计算技术很好地解决了这个用数难题。多个持有各自私有数据的参与方,共同执行一个计算逻辑(如求最大值计算)并获得计算结果,各方发送的消息中不能推断出各方持有的私有数据信息,在此技术下,各参与者的身份和地位相同,可建立共享数据策略。由于数据不发生转移,因此不会泄露用户隐私或影响数据规范,为了保护数据隐私、满足合法合规的要求。专业术语称之为多方安全计算。
此技术能够在保证信息安全前提下,让投研机构利用非公开数据资讯和信息,更好的发掘和预测股票的波动。本文即尝试通过安全多方计算技术和联邦学习技术,将公开数据和非公开数据进行结合,并进行量化交易分析,希望该案例能够给从事量化交易的专业人士拓展分析思路。
3
Avatar的开幕式
“这个case不是为了证明第三方数据有多牛,是表演一下投研对数据的安全建模方案”。
- 研究标的:2019年8月5日-2020年8月4日创业板中所有股票
- 研究目标:该策略目标为利用历史数据,预测每只股票当天是否涨幅超8%,即样本集中日股票涨幅超8%,y值为1,否则y值为0。
-
研究变量
- 联邦学习中节点A数据:通过股票历史数据(公开数据),构建了当日星期、近三天平均收益率、近七天平均收益率、近三天绝对收益率、近七天绝对收益率、近三天标准差、近七天标准差、近三天平均换手率、近七天平均换手率、近三天平均成交量、近七天平均成交量、近三天上涨天数、近七天上涨天数、近三天涨幅大于5%次数、近七天涨幅大于5%次数、近三天跌幅大于5%次数、近七天跌幅大于5%次数,共17个指标。
- 联邦学习中节点B数据:通过百度搜索中关键词为“创业板”的搜索次数,构建了当日创业板搜索指数、近一天创业板搜索指数、近三天创业板搜索指数、近七天创业板搜索指数、近三天创业板指数上升天数、近七天创业板指数上升天数、创业板搜素指数涨幅,共7个指标,模拟外部非公开的数据源。
- 样本集为全部股票,未用到百度指数构建模型
- 样本集为全部股票,用到了百度指数构建模型(其他入参变量与对照组1一致)
- 样本集为华兴源创,未用到百度指数构建模型
- 样本集为华兴源创,用到百度指数构建模型
- 模型结论
2)样本集为全部股票,用到百度指数构建模型,AUC为0.76,未用到百度指数构建模型(其他入参变量与对照组1一致),AUC为0.72,说明百度指数对应预测有明显提升效果。(具体信息见下图)
3)样本集为华兴源创,用到百度指数构建模型,AUC为0.74,未用到百度指数构建模型(其他入参变量与对照组1一致),AUC为0.73,说明百度指数对应预测有提升效果。(具体信息见下图)
根据上述案例,我们发现添加外部的非公开信息,确实能够提升股票预测能力。
对量化投资来讲,传统量化投资大部分的时间都浪费在了数据清洗和数据整理上,且对外获取的数据,由于不清楚数据来源,数据质量和数据安全存在重大隐患,量化策略可能因为数据质量(数据更新不及时,数据获取方式非法)而带来反向影响(触犯个人隐私、由于数据缺失造成量化策略不稳健)。
利用安全多方计算的方式,量化公司就可以使用外部数据源直接进行联邦学习,数据方会根据量化投资者需求,前期进行数据的加工和处理,对于量化公司来说,一是可以有效减少数据清洗和整理时间,二是直接对接数据源,确保了数据安全和数据质量,三是可以确保业务合规,保证量化模型效果稳定,四是可以通过外部数据,构建非公开数据相关的量化策略和指标,获取更多的超额收益。
作者
黄奉孝(郭嘉)
自诩从技术走向业务的小学生。近十年互联网大数据行业经验,先后就职于上海大智慧、平安、挖财,任职大数据架构师、资深分析师等职位,对金融科技有深入研究。
目前任职富数科技高级总监,负责隐私计算的解决方案与业务落地。

文章所载观点仅代表作者本人
且不构成投资建议
敬请注意投资风险
来源链接:https://www.8btc.com/media/635002
来源:算力智库
- 免责声明
- 世链财经作为开放的信息发布平台,所有资讯仅代表作者个人观点,与世链财经无关。如文章、图片、音频或视频出现侵权、违规及其他不当言论,请提供相关材料,发送到:2785592653@qq.com。
- 风险提示:本站所提供的资讯不代表任何投资暗示。投资有风险,入市须谨慎。
- 世链粉丝群:提供最新热点新闻,空投糖果、红包等福利,微信:juu3644。